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ABSTRACT 

Several practical circuits for the design of RC active filters using operational 

amplifiers are given.  The transfer function of each circuit has a pair of complex 

poles and has transmission zeros either all at infinity,  one each at zero and infinity 

or an imaginary pair at ± i CJ .  More complicated transfer functions can be obtained 

by cascading these circuits. Design procedures are outlined which minimize the 

need of capacitor trimming,  and the sensitivity of the transfer function to changes 

in gain of the operational amplifier is minimized. 
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PRACTICAL DESIGNS FOR RC ACTIVE FILTERS 

USING OPERATIONAL AMPLIFIERS 

I. INTRODUCTION 

The availability of high performance but inexpensive integrated circuit operational 

amplifiers makes them very attractive for use in the realization of RC active filters 

for frequencies below approximately 100 kHz. Elimination of the inductor is a great ad- 

vantage in both size and weight,  especially at very low frequencies.  There are a great 

many ways of realizing RC active filters,  so the circuits given in this report are only 

a few of these available. However, they are essentially a complete design catalog in the 

sense that all transfer functions with complex conjugate poles and with zeros anywhere 

on the ju axis can be realized as a cascade of the basic circuits or sections. 

All of the circuits are easy to design and adjust, and their performance is exactly 

as designed.  In all cases most or all of the capacitors do not need to be trimmed to a 

predetermined value; the measured values of the capacitors are used to compute the 

values of the resistors which are then trimmed to these values. Assembly of the com- 

ponents results in a working circuit without further adjustment of the components. 

All of the circuits presented in this report are special cases of a differential in- 

put operational amplifier with feedback provided by a 4-terminal, grounded, RC net- 

work. The general circuit arrangement is analyzed and the results are applied to each 

particular circuit. The emphasis is on the design of the individual circuits or building 

blocks, each of which realizes a pair of complex conjugate poles and 0, 1 or 2 zeros of 

a transfer function. 

II. ANALYSIS OF AN OPERATIONAL AMPLIFIER WITH A GENERAL 
FEEDBACK NETWORK 

The form of the circuit to be considered is shown in Fig. 1.  The input to the net- 

work is the voltage source E, at terminal #1 and the output is voltage E« at terminal #3, 

the output of the operational amplifier.  The operational amplifier is assumed to be ideal 



in the sense that its input admittance is zero (I2 and l^ are zero) and its output impedance 

is zero.  For the purpose of analysis the gain K of the amplifier is assumed 

E3=K(E2-E4) 

Fig.  1.   The general form of the RC active section under considerations. 
Terminal numbers and corresponding voltages and currents are labeled. 

finite so that the effect of large but not infinite gain can be determined. 

The node equations of the RC network are: 

h = ynEi + yi2E2 + yi3E3 + yi4E4 

r2 = y21  El + y22 E2 + y23 E3 + ^24 E4 = ° 

h = y31  El + y32 E2 + y33 E3 + y34 E4 

I4=y41  
El+y42E2 + y43E3 + y44E4 = 0 

(1) 

(2) 

(3) 

(4) 

In Eqs. (2) and (4), I., and I. have been made to equal to zero. Since the output 

voltage E« = K(E2-E.),  solving for E, gives 

E3 
E2 " TT + E4    • 



Substitute this for E2 in Eqs.  (2) and (4),   and rearrange terms to obtain the two 

equations 

'22 
" y21 El =   (y23 + TT > E3 + (y22 + y24> E4 

y42 
-y41El =   <y43 + IT > E3 + (y44 + y42> E4 

(5) 

(6) 

Solving Eqs. (5) and (6) for E~ yields for the transfer function ^— 

E3 
¥7 

y41(y22+y24)-y2i(>'44+y42) 

T 
1 y23(y44 + y42> "y43 (y22 + y24> + TC (y22y44 _y24y42> 

(7) 

An alternate form is 

-K 

*T 

r y2i(y44+y42)-y4i(y22+y24) 

y22 y44 - y24 y42 

l+K 

] 
y23(y44+y24)-y43(y22+y24) 

y22 y44 - y24 y42 ] 
(8) 

It can be shown that the expression within the brackets in the numerator is equal to 

what might be called the "feed forward" ratio of the RC network: 

E4"E2 (9) 
1 

E3=0 

and that the expression within the brackets in the denominator is equal to the feedback 

ratio of the RC network: 

E4-E2 
 E7  (10) 

Ej =0 



The voltage ratio in (9) is evaluated with node 3 grounded, and the ratio in (10) is evaluated 

with node 1 grounded. This gives an interesting and satisfying physical interpretation of 

the transfer function as the negative of the ratio of foreward gain. K Tp, to unity plus the 

loop gain, KTFß: 

E.-E, 

(11) T(s) = 
E3 
El 

^     El      / E3 = 0   _ 
F 

1+KTFB 

- T /T 
F     FB 

I+K( 
** ) '   E1 = 0 

1-KKTpg)"1 

The sensitivity of the transfer function to changes in gain of the operational ampli- 

fier is a critical parameter of the circuits considered here,  and its standard definition 

is the ratio of the fractional change in the transfer function to the fractional change in 

the amplifier gain, which for small changes is 

q (K)   .     ST(s)      K 

For the transfer function of Eq. (11) the sensitivity is 

ST       =    l + KTpB 
(12) 

We see from Eqs.  (11) and (12) that if the loop gain, K TpR,  is much greater than unity, 

the transfer function is essentially independent of the amplifier gain and its sensitivity 

to gain changes is very small. 

For an amplifier with very high gain, the transfer function approaches 

x,,   -
T

F    y4i
(y22+y24>-y2i(y44+y42> ,.,. 

T(s) = Tf*  =    7 ; 1 7 1 r        • (1J) T
FT   ^y^y^y^y^Ty^y 

The form of the numerator and denominator show that with proper design, complex zeros 

and complex poles can be realized by this transfer function.  Thus far the reciprocal 



properties of the RC network (i. e. that y.. = y..) have not been used explicitly and this 
J J 

fact does not greatly simplify the transfer function,  Eq. (12).  In fact even for a reciprocal 

network the full generality of this transfer function will not be used here. It is hoped that 

future work will be able to exploit Eq. (12) for the realization of more complex transfer 

functions than are developed in this report.  For our present purpose the special case of 

the transfer function with y24 = y42 = ° and y14 = y41 = 0 is sufficient.  The resulting 

transfer function is 

Ii, -yoiy 21*44 

El 
y23^44 -y43*22 

(14) 

Using this transfer function we will develop a catalog of circuits and their design. 

III.      SIMPLE RC FEEDBACK NETWORK 

The first network we will consider is shown in Fig. 2.  Each admittance in the net- 

work is either a conductance or a capacitance.  For this network all of the y...    do not 
ij s 

exist but it can be analyzed using Eq. (11).  For this circuit Tp and Tp„ are 

TF = 
 V^  
vwv+vvv w (15) 

and 

FB 

Y3 Y4 + Y5 ( Yl + Y2 + Y3+ V (16) 

© •—w- 

i 
■Vfr 0 

0 

Fig. 2.   Simple RC feedback network. 



The situation of greatest interest is that of very large operational amplifier gain. 

The complete transfer function will be given for infinite gain, but later in the develop- 

ment the effect of large but finite gain will be given. For infinite gain the transfer 

function is 

T(s) = ^ 
-Y   Y Yl x4 

TFB Y3Y4+VY1+Y2+Y3+Y4 
(17) 

There are two cases of interest:   the low-pass case with all transmission zeros at 

infinity and the bandpass case with one transmission zero at the origin and the other 

at infinity.  In both cases a pair of complex poles is required. 

A.       Low-Pass 

For this case Y0 and Y- must be capacitive and the other three admit- 

tances resistive.  The complete circuit is shown in Fig. 3 and its transfer function is 

E3 
FT 

-*WC2C5 
1 s   +s(g1+g3+g4)/C2 + (g3g4/C2C5) 

(18) 

Fig. 3.   Active lowpass filter. 



I 
Fig. 4.   Active bandpass filter. 

which must be equal to the desired transfer function that has the form 

-K   w o  o 
T(s)=   -2  

s +2as + oj 
(19) 

2       2     ^2 
where -K    is the DC gain,  T(o), and T(s) has poles at s = - a ± i ß with a;    = a   + p   . 

By equating like coefficients in Eqs.  (18) and (19) we obtain:  CJQ   = g^g4/^2
Cy 

2a = (g1
+g3"h&4)/c2 

and Ko = gl//g3* Choose the f°llowing parameters 

%A & 

= c7   ' a2 = ÜT and p =   C7 

Then we find that 

2a = —  +a2 (l+Ko)and Uo   =CTla2 

so 

CTj2 -  2apai +a.o
2(l+Ko)p =0 (20) 



The solution for g,  is 

G1 =ap ±   [(ap)2-  üO
2
   (l + Ko)pJ (21) 

For realizability   a,   must be positive and real    so the expression under the radical 
1 2 

in Eq. (21) must be positive which requires  p > 4Q   (l+Ko) = Pmm> where Q = u /2a. 

Let 

4Q2(1+K  ) p    . 
o            rmin . m        ^ i \ p =    w,   =     9       where v is a positive parameter (0 < v < 1) 

that determines how much greater p is than p    .  .  Then in terms of p,Q,K    and y the 

solutions for cr.  and cTo are 

CT1 S4 o 2Q(1 + K ) 

TT-üT^-"^
1
*^    ,- <22> o o   5 ^ 1 + Y 

and 

°2 g3 1 + Y 
u pwC, 2Q(1+K  ) o        K   o   5 ^v        o' 

(23) 

This last equation gives 

g3 2Q 

^~    1 ±Y      ' 

In these equations where there is a choice of sign,   either the upper or lower sign can 

selected, but the use must be consistent. 

A convenient design approach is the following: 

1) compute Q from the specified pole location. 

2) choose K   and compute p    .  . o *       rmin 
3) select capacitors for C2 and Cr whose ratio C2/C5 is greater 

than p    .  ,  measure their values and compute Y. min r 

4) compute g4 and g« from Eqs. (22) and (24). 

This scheme does not require the trimming of capacitors. 

(24) 



For this circuit TpR of Eq. (16)   has a minimum value of approximately 

 T    at w« u , so for  |K T^n\ to be > > 1, K must be much greater than 
(l + Ko)Q2 ° ™ 

2 
(1 + K  )Q .  The dependence of the minimum amplifier gain on the square of Q severely 

limits the highest Q that can be realized reliably with this circuit. 

B.        Bandpass 

With Y« and Y, capacitive and the other three admittances resistive the 

transfer function has a bandpass character of the form 

-2as  T max -sg/a 
T(s) = -* ^—   = —- ,—T r-      . (25) 

/i + _±_ \      ^r 
\C3 C4    / 

s   +2& s + u 
O 8+87^-+     -7T-    )     gc   + 

S^ 

2 2       2 
The circuit is shown in Fig. 4. As before u     = a   +B     and we will again use Q = u /2 a. 

T        = |T(i u )| is the maximum value of the transfer function and is a useful design max     '   v    o'1 6 

parameter.  For this circuit the capacitors C« and C.  can have the same value which 

is a convenience.  By equating corresponding coefficients in Eq. (25), the following three 

equations are obtained: 

2a ■«(^t) 
T 

«i           1             gi 
max Co              / 1            1   \          2<*C, 

3       g5(^+^) 

2 
üo 

g5(gl+g2)        2a<gi + g2) 

C3C4                 C3+C4 

(26) 

(27) 

(28) 

As before the design is based on the assumption that a nominal value is selected for 

C~ = C. and that measured values of the components to be used for C« and C. are 

available. Calculate gc and g, using Eqs. (26) and (27).  Then compute g2 from Eq. (28). 



The design equations are, in order, 

1 2a 
g5    T*T   X7^ 

^      C4 

and 

«l    = TT   "  2a C3 Tmax 

g2   =  2aC, 04) Q   - T max 

The last equation shows that T must be less than or equal to  I 1 + -^- ] max y       Q    / Q2. 
The element g2 is not necessary to realize the desired poles but it allows the gain to 

be adjusted. 

From Eq. (16),   TpR for this circuit is, 

2 2 
s   +2ots + D o 

FB 
s2+ 2as [i+Q

2(i + cL)j +      (J (29) 

The minimum magnitude of T™ occurs near s = i u    and it is approximately  Q     [ 1+ -^- ) 
9   / A      \ '3 

So for  |KTpB|   tobe >>1, K must be much greater than Q    ll+—1   ) 

which is like the low-pass circuit in its dependence on 0 . 

IV. HIGH Q BANDPASS CIRCUITS 

In this section two circuits for the realization of a high Q bandpass characteristic 

are given. The transfer function has a pair of conjugate complex poles and a simple zero 

at the origin, as in Eq. (25). With the operational amplifiers available commercially 

today,  a stable Q of several hundred is practical.  The first circuit uses a Wien bridge 

arrangement and the second uses a twin-T. 

-1 

10 



A.       Wien Bridge Circuit 

The circuit of interest is shown in Fig. 5,  and we use the following parameters. 

1 Rl 
TTT = — . <T,  = 1/R,C 1      1V1      TC7      T" v° ' ul'  ' ul ~ *'"i~l 

Y9 = sC0+G0 =   C0(s + a0)    ,     a0  = G0/C .2    -2       ^2 2    " ^2^2 

p    = R3/R4   and Y = cyc^ 

For the Wien bridge Tp and TpB   are 

and 

T    -        I1- 

- T 
Z1Y2 

FB  "   1 + Z2 V2 

1 

^"»FT p = 
R3 

4 E, 

CT1CT2 " wo 

a2=T^ ■y = 
*~2 

Fig. 5.   Wien bridge active bandpass circuit. 

11 



So the transfer function of the circuit in Fig. 5 is 

T(s)= ^=^£±£^1 
1       Z1Y2-P 

-sa+p'^/R.c, 
  (30) 

s2+s^1 + cr2--^p-ya1(T2 

r 
2 1 

For the design we require d^On ~ u      anc* ^a = CTi +ao - R  *— .   The quantity 2a is 

equal to the difference of two positive quantities, each of whicn (to maximize stability) 
2 

should be as small as possible. Sinceg^cr« = ü   > er, +cr2 
is minimum when a, = CT2 = u 

and this result will be used throughout. However this does not require C, = C«.   We 

will see from another viewpoint that C, = C2 is not optimum. So the transfer function is 

-s(l+ p"  )u   V 
T(s) =  °      , (31) 

s   +2u    s(l-J-) + u o    v     2p '       o 

and 

or 

a-«0(i-i> 

Q = ^-=4TP (32) 

For high Q  v/p « 2. 

By looking at TpB we can find a value of p that minimizes the sensitivity of the 

transfer function to changes in amplifier gain.  For the Wien bridge circuit Tp„   is 

-T XFB 

s2 + 2u   s(l- -J-)+CJ2 

 o   v       2p  '     o  
(l+i)[s2 + üos(2+Y) + üo

2J 

2 2 
s   + 2as +u 

(1+-)   [s   +oloS + (2+7) + üo2j (33) 

12 



For s = i u ,   TFR is very near its minimum value and we get 

|T  i Q"J 
FBs=i,   "     2+Y+^ + I        ' o p      p 

For v/p = 2, the value of p = 1 minimizes the denominator to a value of 8. So the 

minimum value of  |TpR|  as a function of frequency is (8Q)     which is maximized by 

the parameters available. This is a very broad optimum, and p = 2 or 1/2 decreases 

the value of | TpB<i CJQ)| to only (9Q)"  .  Therefore, for | K TpR| tobe >> 1, K must 

be much greater than 8Q. This dependence of the minimum value of K on Q (rather than on 
2 

Q   as in the previous circuit) is the reason that the Wien bridge circuit and the following 

twin-T circuit are preferred for the realization of high-Q poles. 

The circuit can be designed easily as follows. Select capacitors and measure their 

values (for 1/2  £ p <; 2,   l£Y=   C^/C^ ^ 4). Compute the values of Rr  R2 and p using 

UQ = 1/R1C1 = 1/R2C2 and p = (v/2) (1-  -jjp)"1.   Usually for high-Q circuits R{ and R4 

must be adjusted in the circuit to obtain sufficient accuracy in the realization, so pro- 

vision for this should be made.  R, adjusts the center frequency and has a slight effect on Q 

while R.  adjusts the Q.  The maximum gain occurs at s = iu    and is   JT(iu )| = (2 + y) Q. 

If this is too high, the gain can be reduced by using a resistive voltage divider at the input 

which has the desirable feature of reducing the effect of source impedance variations or 

uncertainties on the transfer function. 

B.        Twin-T Circuit 

The twin-T circuit in Fig. 6 realizes the same transfer function as the Wien 

bridge, a pair of complex conjugate poles and a zero at the origin,  Fq. (25). Many other 

twin-T active circuits have a pair of zeros on the negative real axis along with the pair 

of complex poles.  In many cases, zeros at the origin and infinity are desirable. 

The analysis of this circuit is straightforward but laborious, so only the results 

will be given. Tp and TpR are 

(34) - T 
s(G3/C1) 

XF /G2+G        G    X            Gl       /G                  \ 

13 



2   , s    + s 

-T FB 2^ s  + s 

(ft k$*'-) 
"TT-^ CT/ü:  (35) 

In Fig. 6 the parameters are defined in terms of the circuit element values. Thus, the 

transfer function 

tE, 

G3        _   G +G2 

CTo '    C^ + Cj C3 

G4 Rl 

c     -C1C2 
o      Cx+C2 

Fig. 6.   Twin-T active bandpass circuit. 

for very large amplifier gain is 

T(s) = 
*T s  + s 

-sCGg/cp 
(36) 

14 



With the parameters as specified in Fig. 6, the twin-T itself (with G, = 0) has 

zero transmission at the real frequency u =cr . However,  even with this balance there 

are still too many parameters to make an efficient optimization, so the following 

further restrictions are placed on the circuit element values (these are a standard set 

of assumptions). 

2 * 
Cl " C2 C3  " n    Cl 

G|  = G« G« = 2 n G (37) 

Therefore, 

1 G3 2G1 Gl 1    G3 
Co = 1  Cl and CTo =  TCI = TJ- = "   Cf = n   -q 

The transfer function now becomes 

-2no"i s 
T(s) =   -« i-5  (38) 

s   + 27 axs +na1 (1 + 2Y) 

where g,  = G./C,,   and the feedback factor is now 

2 2 
s +2y a! s + na.   (1 + 2^) 

-TFR =   -2 i i 2  (39) 
^b       sZ+2ajL s(l + n+Y) + nCTl   (l + 2v) 

As in the case of the Wien bridge circuit, optimum values of the parameters can be 

found which minimize the maximum value of the sensitivity to changes in the gain of 

the operational amplifier.  To this end we find the frequency that minimizes  | TFR|  to 

'    FB»   .  ,  and then find the parameters, n and y,   that maximize |Tpg| TpR 
min" 

has a pair of negative real poles and a pair of complex zeros which are the poles of 

the transfer function,  Eq. (38).   |TFR| has a minimum value which is approximately 

|TpB(i (Jo)|, where uQ = 0^/11(1 + 27)    . 

lTFB<lüo>l   =  T+nV 
(40) 

15 



The parameters n and y are related through the Q of the pole of the transfer function, 

Q=^=-rr    yn(l + 2Y) « <£l    ,forY<<l. 

Using this in Eq. (40) we obtain 

'W-MTF)]"' 
which is maximum for n = 1 and then has the value (1 + 4Q)    , and as above the optimum 

is not critical.   So, for this twin-T circuit, the amplifier gain, K, must be much greater 

than 4Q+1 to make very small the sensitivity of the transfer function to changes in gain. 

This is roughly a factor of two improvements over the Wien bridge, but costs an extra 

capacitor. 

The following design procedure is suggested as one that is easy to carry out and 

it requires the trimming of one capacitor at most (three resistors must be trimmed). 

1. Find tentative values for C,,  C2,  C~ and R, by carrying out a rough design 

using Eqs. (37) and (38) for some value of n in the range 1/4 £ n £ 4. 

2. Select components for these four elements and measure their values on an 

impedance bridge. 

3. Using Eq. (36) compute the remaining components: G4, G~ and G«. 

G,  = 2a C^ = R'1 

4 o 4 

2 
u     C   C0 R, R. - 1 , 

n     -       °       0314 .o"1 
G2 ftx +R4     "   R2 

G3 = m M ■ v 
The three elements must be trimmed to their computed values.  For a very high Q 

pole the twin-T must have very high rejection at the frequency u = o ,   and both R„ 
O o 

and C« must be adjusted in the circuit to obtain this. 

L6 



V.       CIRCUITS WITH ZEROS OF TRANSMISSION 

For the realization of a pair of imaginary transmission zeros and a pair of com- 

plex poles, the twin-T RC used in the previous section is used, but here it is connected 

to the operational amplifier in a different way.  The connection is basically the same as 

that of the Wien bridge circuit of Section IV-A.  Here the twin-T replaces the RC arms 

of the Wien bridge.  Two similar circuits are given and the general form of the transfer 

function is 2        2 
s   + w o 

"72 9~ 
s +2as + (j. 

Various special forms result in u, < u ,  u. > u     or u. = u    (which is a notch network). 

A.       Circuit Alpha 

The first circuit for consideration is shown in Fig. 7,  and it has y44 = Gr+ G,- 

and y.« = - G^..   See Eq. (14).  Thus, the zeros of y21 (which are those of the twin-T) 

are zeros of transmission. Stability requires that C, and G^ cannot be zero together; 

in the designs discussed either one or the other is zero. 

Fig.  7.   Active RC twin-T circuit alpha whose transfer function 
is Eq.(43). 

17 



A straightforward but tedious analysis of the circuit yields the following 

expressions for TF and TFR. 

_(s2+ Gl°2  ) 

o ^ o 1 o/No3 Q ' 

TF =    > 
s 

rCToC4 + G4 /G3   +  G2\1/G1G2+ 
G4   \ 

3     G2\+/
G1G2+ ^TT" ^+^4 G^~ 

V +Ü7 

(42) 

Thus the transfer function,  E„/E,, of the circuit is (for K very large), 

/ 2       G1G
2\ 

(l + p)^s   +   ü- 

T(S) =    2/,,   M.    rCTo(V^ /<TÜ2YI+f°lÜ2+       M 

Here we see that if both C\  and G. are zero,  a. is negative and T(s) is unstable.  How- 

ever,  if only C. = 0,  a stable transfer function with w, > u    can be obtained; and if only 

G4 = 0, a stable transfer function with u. < CJ     can be obtained. Designs for these two 

cases will be given, but first optimization of the parameters will be discussed. 

As in the previous circuits it is desirable to minimize the sensitivity of the transfer 

function to changes in amplifier gain K.  To accomplish this, the minimum of | Tpß| 

as a function of u is maximized by a suitable selection of the circuit parameters.  In 

contrast to the previous circuits,  a set of parameters to optimize the design of this 

circuit has not been found.  However,  it is possible to show that the conditions 

Cl =C2=T C3 andGl = G2=TG3 (44) 

18 



nearly satisfy the equation for the optimum design in each of the two cases of interest, 

and that | TpR| has a minimum value of approximately (a/2cj.) = (4Q)    .   This is 

essentially the same as for the circuit in Section IV-B which also uses the twin-T. So 

this will be used as a satisfactory solution to the optimization of the design. 

1.       Design for C, = 0 (u, > u ). 

The transfer function is 

T(s) = 
(1 + P) 

2^ 
s  + s 

/ 2     0^2 \ 

/fe OTT" (45) h D/°3 _ G2\I ;yv2+  *4\ 

where 

2      G1G2 

o  3 

2         2             G4 
ül   = üo   + °o Ü" 

0 

0            x     1            o ' 

R5 
R6 

G6 

G3             Gj+G2 

CT°      Cl+tJ2            C3 

C1C2 
Co-C1 + C2 

(46) 

(47) 

(48) 

(49) 

(50) 

a)       After selecting a suitable impedance level for the circuit, assume the 

conditions of Eq. (44) and compute tentative values for the elements of the twin-T using 

Gl        G3 
ÜT ■ -17 - % 

b)       Select components for C,, C2, C« and G, (approximately equal to the com- 

puted values) and measure their actual values to an accuracy of ±0.1$. 

19 



c) From these measured values, compute in succession:   G2 using 

Eqs. (46) and (50), G^ and aQ using Eq. (49),  G4 using Eq. (47),  and p using Eq. (48). 

d) Trim components for G2 through G^ to these computed values,  again 

to a tolerance of 0. Vf> and construct the circuit. 

2.        Design for G4 = o (CJ, < u ) 

The transfer function is 

(s2 + GlG2 \ 
(I+P)U + 

-C7V     r     C, N   /crife.\i  -GTG- 

where u , a    and C    are as above in Eqs. (46), (49) and (50),  respectively, and 

-1 

»i2 = % y+ C7 ) <52> 

a) Proceed as in parts  a) and b) above. 

b) From these measured values,  compute in succession:   G« using 

Eqs. (46) and (50),  G~ and a    using Eq. (49),  C.  using Eq. (52),  and p using Eq. (53). 

c) Trim conponents to these computed values to a tolerance of 0. Yf> 

and construct the circuit. 

For both designs the tolerance of 0. Vf> on components is sufficiently ac- 

curate so that in most cases no furhter trimming in the circuit is necessary.  In some 

wide band situations a tolerance of 1$ might be sufficient, but in narrow band situa- 

tions in-circuit trimming of the twin-T notch frequency (u ) and of p are necessary. 

C« and G« provide orthogonal adjustments for u . 
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B.        Circuit Beta 

The second circuit for consideration, which is a modified arrangement of 

the first, is shown in Fig. 8. It is of interest, in particular, because with both C\ and 

equal to zero a notch network with complex poles is obtained. The expressions for Tn 

and TFR for this circuit are 

T    = 

/   2       G1G2\ 
"Vs   +^cTJ  (54) 

*3 
■AAV- 

^2 

+ 1 Rl R2       I     J_C4 

1 i—/WV*   *      w* 
R6 R5 

-O E. 

/7T777 

Fig. 8.   Active RC twin-T circuit beta whose transfer function 
is Eq.(56). 

and 

FB 
_j o^ 2__       ° 

G4 + G2 

4+ <V^2 

3V/'G1G2   +       G4\ 
1'     N   o  3 o ' 

+ 
U3\+/U1U2  +        ^TV 

l 
+ p 

(55) 
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Thus the transfer function of circuit Beta is 

(1 + P) 
(l      G1G

2\ 

T(s) =   7 nr v~ r J-P. ^n TT-T—r7T7* n—r (56) 
s 

Minimizing the sensitivity of this circuit has the same difficulties as in circuit 

Alpha, and fortunately the same near optimum solution is obtained with the conditions 

of Eq. (44). So the following designs are based on approximate equality in Eq.   (44), 

and the gain of the amplifier is required to be much greater than 4 Q. 

1.       Design for C, = o    (w, > <J ) 

The transfer function is 

(1 + P) 
/   2     G1G

2\ 

TT^T G3 \  + /
G1G2   +        Ö7T 

T(s) -  —-^ ,s   ,       „,_ n „ (57) 

s   + s 

where u , u, , cr    and C    are defined as above in Eqs. (46), (47), (49) and (50)   and here 

G« + G^ G« Re 
2a = -fp-i -pji     •   P = R

5
- <58> 

o 1 6 

a) After selecting a suitable impedance level for the circuit, assume 

the conditions of Eq. (44) and compute tentative values for the elements of the twin-T 

using 

Gl        G3 

b) Select components for C,, C2> C« and G, (approximately equal to 

the computed values) and measure their actual values to an accuracy of 0.1$. 

c) From these measured values compute in succession: G2 using Eqs. (46) 

and (50), G3 and<7Q using Eq.(49), G4 using Eq. (47), and p using Eq. (58). 

d) Trim components for G2 through G6 to these computed values, again 

to a tolerance of 0.1$  and construct the circuit. 
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2.       Design for G4 = 0 (u^ < uQ) 

The transfer function is 

(l + p)ls^+    ' 

s 

il 
RHT^W) 

where <J , o~    and C    have their usual definitions, and here 

(■♦%)' 
ui2 = uo2 fi+ S- i 

and /_ ^   , ^ ^   \  /       ^v"1 

2a = (^-•SK) ■-* 
a) Proceed as in a) and b) immediately above. 

b) From the measured values for C,, C2, C«  and G, compute in 

succession:   G2 using Eqs. (46) and (50), G~ and cr    using Eq. (49),  C. using Eq. (60), 

and p using Eq. (61). 

c) Trim components to these computed values to a tolerance of 0. Vf> 

and construct the circuit. 

3.       Design for C.  = G4 = o (a>, = u ) 

The transfer function is 

2 , 
s   + s 

/   2^   G1G2    \ 
(i+p) 

T(s> =  7-X V   v     "V/l<! v  (62) 

which has the complex poles at the same distance from the origin as the transmission 

zeros.  The magnitude of Eq. (62) is constant except for a narrow notch centered at CJ 

and is 3 dB down at u   ± a.   In Eq. (62) w , a   and C   have their usual definitions,  and 

w, = u   while, 

G2 G« R5 
2a = — - 9 -L    ,    p = -ß- (63) 

co ul 6 
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a) Proceed as in a) and b) above for the case C. = o. 

b) From the measured values of C,, C2> C~ and G„ compute in 

succession:   G2 using Eqs.(46) and (50),  and p using Eq. (63). 

c) Trim components to these computed values to a tolerance of 0. Ij 

and construct the circuit. 

For accurate placement of the notch frequency, provision must be made to 

trim G« and C„ in the circuit. 
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